Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices and Land Surface Temperature from MODIS Data

نویسندگان

  • Momadou Sow
  • Cheikh Mbow
  • Christelle Hély
  • Rasmus Fensholt
  • Bienvenu Sambou
چکیده

The monitoring of herbaceous fuel moisture content is a crucial activity in order to assess savanna fire risks. Faced with the difficulty of managing wide areas of vegetated surfaces, remote sensing appears an attractive alternative for terrestrial measurements because of its advantages related to temporal resolution and spatial coverage. Earth observation (EO)-based vegetation indices (VIs) and the ratio between Normalized Difference Vegetation Index (NDVI) and surface temperature (ST) were used for OPEN ACCESS Remote Sens. 2013, 5 2618 assessment of herbaceous fuel moisture content estimates and validated against herbaceous data collected in 2010 at three open savanna sites located in Senegal, West Africa. EO-based estimates of water content were more consistent with the use of VI as compared to the ratio NDVI/ST. Different VIs based on near-infrared (NIR) and shortwave infrared (SWIR) reflectance were tested and a consistent relationship was found between field measurements of leaf equivalent water thickness (EWT) from all test sites and Normalized Difference Infrared Index (NDII), Global Vegetation Moisture Index (GVMI) and Moisture Stress Index (MSI). Also, strong relationships were found between fuel moisture content (FMC) and VIs for the sites separately; however, they were weaker for the pooled data. The correlations between EWT/FMC and VIs were found to decrease progressively as the woody cover increased. Although these results suggest that NIR and SWIR reflectance can be used for the estimation of herbaceous water content, additional validation from an increased number of study sites is necessary to study the robustness of such indices for a larger variety of savanna vegetation types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Air temperature estimation based on environmental parameters using remote sensing data

 This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the...

متن کامل

A Combined Approach with Smos and Modis to Monitor Agricultural Drought

A synergistic fusion of the Soil Moisture and Ocean Salinity (SMOS) L2 soil moisture with the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived land surface temperature (LST) and several water/vegetation indices for agricultural drought monitoring was tested. The rationale of the calculation is based on the inverse relationship between LST and vegetation condition, related in turn w...

متن کامل

Estimating and Up-Scaling Fuel Moisture and Leaf Dry Matter Content of a Temperate Humid Forest Using Multi Resolution Remote Sensing Data

Vegetation moisture and dry matter content are important indicators in predicting the behavior of fire and it is widely used in fire spread models. In this study, leaf fuel moisture content such as Live Fuel Moisture Content (LFMC), Leaf Relative Water Content (RWC), Dead Fuel Moisture Content (DFMC), and Leaf Dry Matter Content (LDMC) (hereinafter known as moisture content indices (MCI)) were ...

متن کامل

Evaluation of MODIS NDVI and NDWI for vegetation droughtmonitoring using Oklahoma Mesonet soil moisture data

[1] The evaluation of the relationship between satellitederived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive...

متن کامل

Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches

This study presented a MODIS 8-day 1 km evapotranspiration (ET) downscaling method based on Landsat 8 data (30 m) and machine learning approaches. Eleven indicators including albedo, land surface temperature (LST), and vegetation indices (VIs) derived from Landsat 8 data were first upscaled to 1 km resolution. Machine learning algorithms including Support Vector Regression (SVR), Cubist, and Ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2013